
Inheritance: Polymorphism and Virtual Functions
Lecture 27

Sections 15.4 - 15.7

Robb T. Koether

Hampden-Sydney College

Fri, Mar 30, 2018

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 1 / 28



1 Polymorphism

2 Abstract Classes

3 Assignment

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 2 / 28



Outline

1 Polymorphism

2 Abstract Classes

3 Assignment

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 3 / 28



Polymorphism

Definition (Polymorphism)
Polymorphism allows an object of one type to be treated as an object
of a different type, provided that the IS-A relation holds. The “actual”
type of the object may not be determined until run time. This is called
late binding or dynamic binding (as opposed to the usual early binding
or static binding.).

A function that specifies a base-class object in its parameter list
may accept a derived-class object in its place.
Polymorphism works because the derived-class object IS-A
base-class object.
We have already seen this used in the constructors.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 4 / 28



Polymorphism and Passing by Value

If a function passes the base-class object by value, then the
derived-class object is considered to be an object of the base
class.
Why does this happen?

This happens because the base-class copy constructor was used
to create the local object.
The local object loses its derived-class data members and
functions.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 5 / 28



Polymorphism and Passing by Value

If a function passes the base-class object by value, then the
derived-class object is considered to be an object of the base
class.
Why does this happen?
This happens because the base-class copy constructor was used
to create the local object.

The local object loses its derived-class data members and
functions.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 5 / 28



Polymorphism and Passing by Value

If a function passes the base-class object by value, then the
derived-class object is considered to be an object of the base
class.
Why does this happen?
This happens because the base-class copy constructor was used
to create the local object.
The local object loses its derived-class data members and
functions.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 5 / 28



Example

Example (Polymorphism)
int main()
{

Man man("John");
Woman woman("Jane");
describe(man);
describe(woman);

}

void describe(Person p)
{

cout << p << endl; // Is p a Man or is p a Woman?
// Or is p just a Person?

return;
}

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 6 / 28



Polymorphism and Passing by Reference

If the function passes the base-class object by reference, then the
derived-class object may maintain its identity as an object of the
derived class.

However. . .

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 7 / 28



Polymorphism and Passing by Reference

If the function passes the base-class object by reference, then the
derived-class object may maintain its identity as an object of the
derived class.
However. . .

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 7 / 28



Example

Example (Polymorphism)
int main()
{

Man man("John");
Woman woman("Jane");
describe(man);
describe(woman);

}

void describe(Person& p)
{

cout << p << endl; // Is p a Man or is p a Woman?
// Or is p just a Person?

return;
}

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 8 / 28



Outline

1 Polymorphism

2 Abstract Classes

3 Assignment

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 9 / 28



Virtual Functions

When the base class and a derived class have distinct functions of
the same name, how does the compiler know which one to
invoke?
If the base-class function is virtual, then the computer will invoke
the member function of that name that is closest to the class of the
invoking object.
Write the keyword virtual at the beginning of the function
prototype.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 10 / 28



Example

Example (Virtual Functions)
class Person
{

virtual void output(ostream& out) const
out << m_name << ’ ’ << m_sex;

};

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 11 / 28



Example

Example (Virtual Functions)
int main()
{

Man man("John");
Woman woman("Jane");
describe(man);
describe(woman);

}

void describe(Person& p)
{

cout << p << endl; // What will happen?
return;

}

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 12 / 28



Virtual Functions and Value Parameters

What happens when the function is virtual and the parameter is a
value parameter?

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 13 / 28



Example

Example (Virtual Functions)
int main()
{

Man man("John");
Woman woman("Jane");
describe(man);
describe(woman);

}

void describe(Person p)
{

cout << p << endl; // What will happen?
return;

}

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 14 / 28



Pure Virtual Functions

A function may be designated as a pure virtual function.
Write

virtual function(parameters) = 0;

A pure virtual function is not instantiated (i.e., defined).
However, the function must be instantiated in one of the
nonabstract derived classes.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 15 / 28



Pure Virtual Functions

This is done when
The function must be implemented at a certain level in the
hierarchy,
But there is not enough information at that level to implement it.

Example?

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 16 / 28



Abstract Classes

Definition (Abstract Class)
An abstract class is a class that contains a pure virtual function. No
object of an abstract class may be instantiated.

Function parameters of an abstract class type must be passed by
reference.
Why?

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 17 / 28



Example

Example (Pure Virtual Functions)
class Person
{

virtual void output(ostream& out) const = 0;
};

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 18 / 28



Example

Example (Pure Virtual Functions)
int main()
{

Man man("John");
Woman woman("Jane");
describe(man);
describe(woman);

}

void describe(Person& p)
{

cout << p << endl; // What will happen?
return;

}

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 19 / 28



Abstract Classes

Why include the output() function in the Person class at all?

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 20 / 28



Example

Example (Abstract Class)
Circles, squares, and triangles are shapes.
Create a Shape class as a base class.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 21 / 28



Example

Example (Abstract Class)

Shape

Circle Rectangle Triangle

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 22 / 28



Example

Example (Abstract Class)
Each shape has an area and a perimeter.
However, we cannot find the area or perimeter until we know the
particular kind of shape.
Therefore, Shape should be an abstract class.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 23 / 28



Example

Example (Abstract Class)

Shape
virtual area() = 0;
virtual perim() = 0;

Circle
area() = πr2;
perim() = 2πr;

Rectangle
area() = lw;

perim() = 2(l + w);

Triangle
area() = (1/2)bh;

perim() = a + b + c;

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 24 / 28



Example

Abstract Class
class Shape
{

virtual area() const = 0;
};

class Rectangle
{

float area() const {return m_length*m_width;}
};

class Circle
{

float area() const {return PI*m_radius*m_radius;}
};

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 25 / 28



Example

Abstract Class
int main()
{

Rectangle rect(4.0, 5.0);
Circle circ(3.0);
describe(rect);
describe(circ);

}

void describe(const Shape& shape)
{

cout << "The area is " << shape.area() << endl;
}

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 26 / 28



Outline

1 Polymorphism

2 Abstract Classes

3 Assignment

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 27 / 28



Assignment

Assignment
Read Sections 15.4 - 15.7.

Robb T. Koether (Hampden-Sydney College)Inheritance: Polymorphism and Virtual Functions Fri, Mar 30, 2018 28 / 28


	Polymorphism
	Abstract Classes
	Assignment

